ANDROLOGY
LECTURE-2

PUBERTY AND SEXUAL MATURITY

PUBERTY

Puberty:

The age/time when genital organs become functional, and reproduction becomes possible.

Characteristics of puberty in males:

- Secondary sexual characters
- Sexual desire
- Presence of viable spermatozoa in semen

PUBERTY

Puberty in males

• 4-6 months : Primary spermatocytes in seminiferous tubules

• 5-7 months : Seminal secretions released by accessory glands

6-7 months : Spermatids appear

• 7-9 months : Spermatozoa in semen

Growth acceleration (6-10 months)

- GnRH
- LH
- Onset of spermatogenesis
- Early signs of puberty

SEXUAL MATURITY

Sexual maturity –

Attainment of full reproductive capacity

- Increased ejaculate volume.
- Higher motility and concentration of spermatozoa.
- This happens 6-9 months after puberty in bulls.

Gap between puberty and sexual maturity:

Immature males should not be used for breeding until after 6-12 months of reaching puberty

FACTORS AFFECTING PUBERTY/SEXUAL MATURITY

- 1. Poor nutrition
- 2. Insufficient weight gain
- 3. Gonadal growth
 - Scrotal circumference
 - Sex desire & sperm production
 - Diameter of seminiferous tubules
- 4. Genetic factors
 - Larger breeds early onset
 - Buffalo male calves mature earlier than cattle bulls
 - Cross breeding acceleration of puberty onset

FACTORS AFFECTING PUBERTY/SEXUAL MATURITY

- 5. Tropical regions delayed puberty
- 6. Seasonal influence:
 - Winter favours sexual maturity in young bulls used for AI
 - Hot seasons delay puberty esp in sheep and buffaloes
- 7. Presence of opposite sex

AGE AT PUBERTY FOR DIFFERENT SPECIES

Species	Age at Puberty	Range
Bull	9-12 months	6-18 months
Stallion	18 months	12-24 months
Boar	5-7 months	4-8 months
Ram/Buck	7-8 months	4-12 months
Dog	7-10 months	5-12 months
Cat	8-10 months	6-15 months

GERM CELL DEVELOPMENT

Primordial germ cells – spermatogonia in primitive testes

Testicular development –

- Development of medullary cords
- Androgen secretion by primitive testes
- Development of mesonephric ducts, male external genitalia
- Degeneration of paramesonephric ducts
- Masculinisation of the foetus

HORMONE REGULATION BEFORE PUBERTY

GnRH (hypothalamus) ——— Stimulation of pituitary to release FSH & LH stimulation of Leydig cells stimulation of seminiferous tubules for spermatogenesis to secrete testosterone secondary sexual characteristics

and spermatogenesis

Testosterone – Negative feed back to GnRH

HORMONE REGULATION BEFORE PUBERTY

Sertoli cells:

FSH -> stimulates Sertoli cells to produce Androgen binding protein (ABP)

- ABP carries testosterone to epididymis
- Essential for sperm maturation and storage

Biosynthesis of testosterone:

Acetate → Cholesterol → Pregnenolone → Progesterone → Androstenedione → Testosterone.

- Testosterone is bound to steroid-binding globulin in the bloodstream.
- 1% free testosterone enters prostate gland, testosterone is converted to dihydrotestosterone (DHT) by the enzyme 5-alpha reductase, which then binds to androgen receptors, influencing growth and function of the prostate.

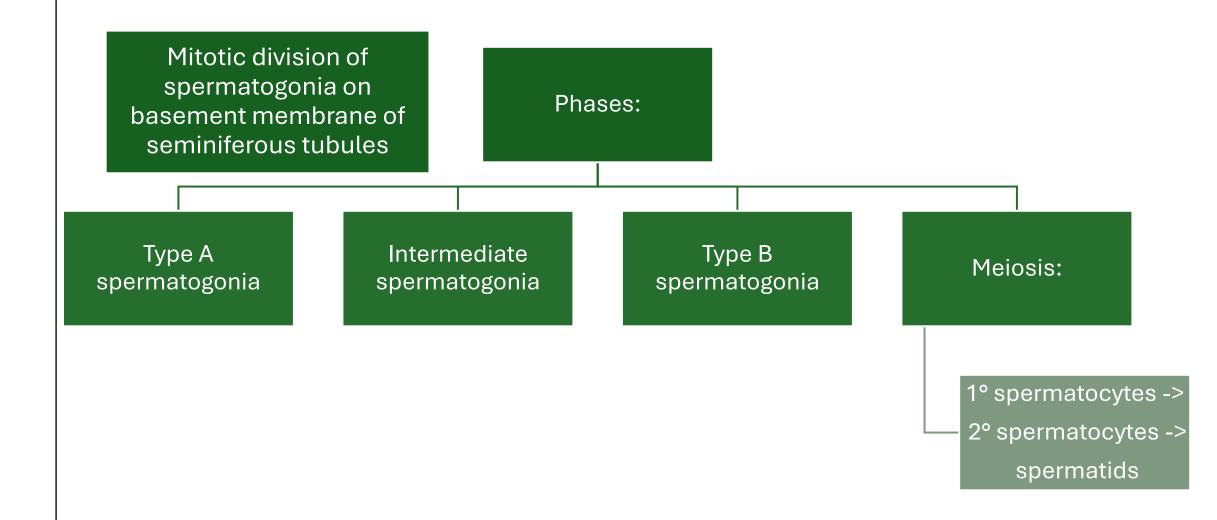
HORMONE REGULATION BEFORE PUBERTY

Effect of Excess Androgens:

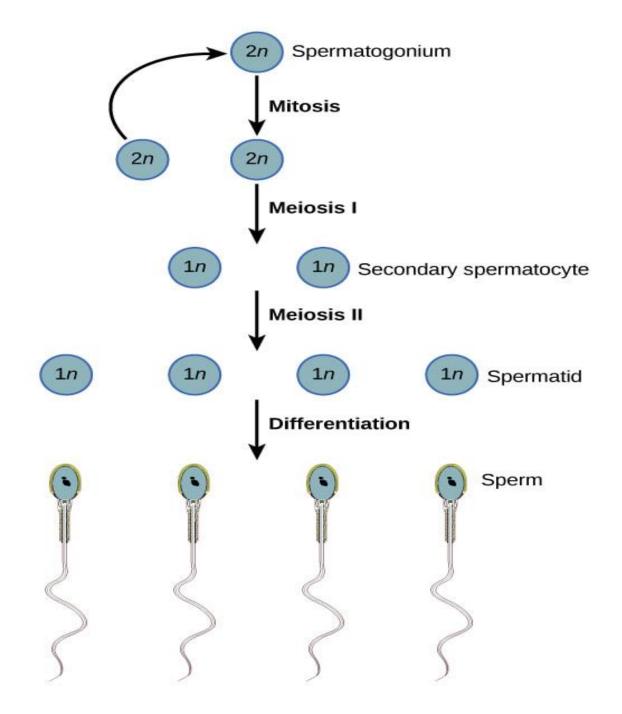
- Sertoli cell tumours in dogs high levels of estrogens feminization and testicular atrophy.
- Masculinization in females.

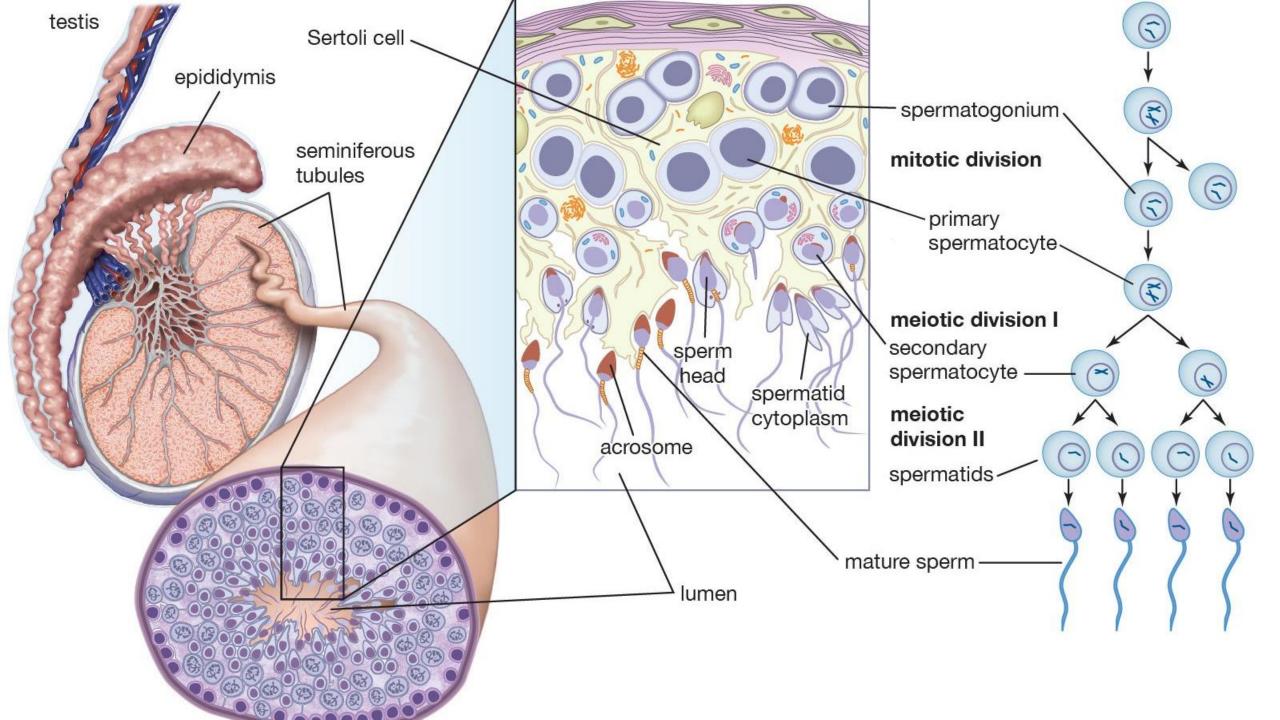
SPERMATOGENESIS

Formation of spermatozoa from spermatogonia in seminiferous tubules of testes


Phases:

- 1. Spermatocytogenesis: Proliferation of spermatogonia via mitosis and meiosis to form spermatids.
- 2. Spermiogenesis: Differentiation of spermatids into spermatozoa (morphological changes).


TYPES OF SPERMATOGONIA:


- **1.Type A Spermatogonia:** These cells maintain the stem cell population through mitotic division. They can either replicate themselves or differentiate into Type B spermatogonia.
- **2.Type B Spermatogonia:** These cells are derived from Type A and will undergo further mitotic divisions to become primary spermatocytes.

SPERMATOGENESIS - Spermatocytogenesis

Duration: 45 days in bulls

SPERMATOGENESIS - Spermiogenesis

Key changes:

- 1. Condensation of nuclear chromatin.
- 2. Formation of tail/flagellum.
- 3. Formation of acrosomal cap.

Phases:

- 1. Golgi phase
- 2. Cap phase
- 3. Acrosomal phase
- 4. Maturation phase

SPERMATOGENESIS - Spermiogenesis

Duration of spermatogenesis:

• Time:

Boar: 50-60 days.

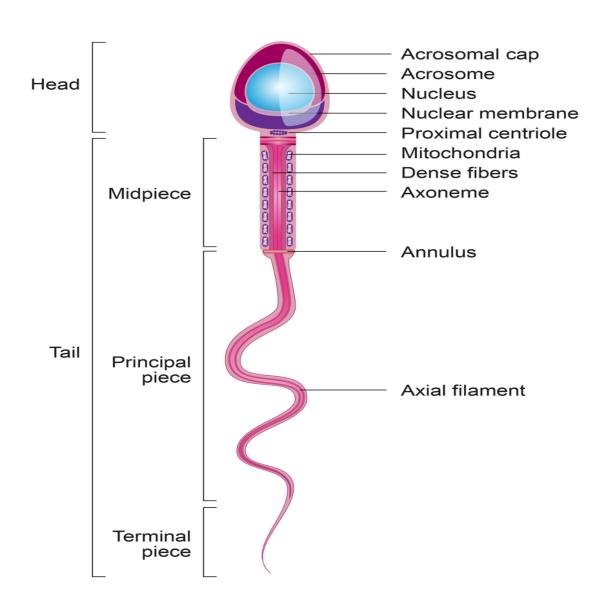
Bull: 60-70 days.

Ram: 60-70 days.

• Cycle of seminiferous epithelium: 4-5 cycles in spermatogenesis.

• Cycle Duration (Species):

Species	Cycle Duration (Days)
Boar	9
Ram	10
Horse	12
Bull	14


SPERMATOGENESIS - Spermiation

Definition: Release of mature spermatozoa into seminiferous tubule lumen.

Process:

- Elongated spermatids extruded into lumen.
- Cytoplasmic stalk forms, leading to proximal droplet.
- Residual bodies removed by Sertoli cells.

STRUCTURE OF SPERMATOZOA

FACTORS AFFECTING SPERMATOGENESIS

PHYSICAL FACTORS

- Irradiation
- Hyperthermia
- Hypothermia
- Light
- Low oxygen tension

CHEMICAL FACTORS

- Anti-spermatogenic drugs
- Alkylating agents
- Organochlorides
- Organophosphates

NUTRITIONAL FACTORS

- Low/High plane of nutrition
- Hypovitaminosis A, E
- Exogenous steroids

FACTORS AFFECTING SPERMATOGENESIS

GENETIC FACTORS

- Hereditary defects
- Inbreeding
- Cytogenetic disturbances
- Hybridisation
- Freemartinism

PATHOLOGICAL EFFECTS

- Testicular hypoplasia
- Cryptorchidism
- Imperfect testicular descent
- Hernia

ACQUIRED FACTORS

- Testicular degeneration
- Aging

1. Puberty in bull is reached when the first ejaculate contain at least

PPSC 2023

- 1. 50 million sperm with 50% motility
- 2. 500 million sperm with 50% motility
- 3. 50 million sperm with 10% motility
- 4. 500 million sperm with 10% motility
- 2. Which following animal species possess highest sperm concentration in semen (PPSC 2023)
 - 1. Ram
 - 2. Bull
 - 3. Stallion
 - 4. Boar

3. Which of the following species is short day breeder?

PPSC 2023

- 1. Mare
- 2. Cattle
- 3. Dog
- 4. Sheep
- 4. Transformation of secondary spermatocytes to spermatids is known as: OPSC 2019
 - 1. Spermatocytogenesis
 - 2. Spermiogenesis
 - 3. Spermateliosis
 - 4. Spermiation

- 5. Which of the following testicular pathology is not due to congenital or hereditary causes?
 - 1. Testicular hypoplasia
 - 2. Testicular degeneration
 - 3. Cryptorchidism
 - 4. None of above MPSC 2017
- 6. Sigmoid flexure is located pre scrotal in:
 - 1. Bull
 - 2. Boar
 - 3. Ram
 - 4. Stallion UK VO 2024

- 7. Castration of the male calf causes total loss of:
 - 1. Erection
 - 2. Ejaculation
 - 3. Sexual desire
 - 4. All of the above
- 8. Seminal plasma is slightly alkaline in:
 - 1. Boar
 - 2. Bull
 - 3. Ram
 - 4. Buck

OPSC 2017

OPSC 2017

- 9. Cowper's glands are well developed in:
 - 1. Bulls
 - 2. Dogs
 - 3. Bears
 - 4. Stallion

OPSC 2017

- 10. Bulbo-urethral gland is developed from:
 - 1. Genital tubercle
 - 2. Urogenital sinus
 - 3. Genital fold
 - 4. Genital swelling

OPSC 2017

Thank-you