1.	FMD virus in dry fecal matter during summer can persist for up to:A) 7 daysB) 10 daysC) 14 daysD) 21 days
2.	In winter, FMD virus may survive in soil for as long as: A) 3 days B) 14 days C) 21 days D) 28 days
3.	Among livestock, which species acts as an amplifier host for FMD? A) Cattle B) Sheep C) Goats D) Pigs
4.	 The middle layer of the stratum spinosum in the epidermis is significant because it is: A) A barrier to viral entry B) The site of antibody production C) Where virus-induced necrosis is minimal D) The most favorable cell layer for FMD virus replication
5.	FMD virus is effectively inactivated when exposed to temperatures above 56°C for 30
	A) True B) False C) Only in the presence of disinfectants D) Only under acidic conditions
6.	On hay or straw bedding, FMD virus can remain viable for: A) 10 weeks B) 15 weeks C) Up to 20 weeks D) 6 weeks
7.	In India, the FMD outbreak is most frequently associated with which serotype? A) Type A B) Asia 1 C) SAT 2 D) Type O
8.	FMD virus loses infectivity outside the pH range of:A) 4–7B) 5–8C) 7–10D) 6–9
9.	FMD virus excretion by infected animals begins approximately how many days before clinical signs appear?A) 1 dayB) 2 daysC) 4 daysD) 7 days
10.	 In diagnosing FMD, which type of lesion is considered a better source for virus recovery in older cases? A) Oral lesions B) Nasal lesions C) Foot lesions D) Skin lesions on the udder
11.	 Bacillus anthracis is best classified as a: A) Gram-negative rod B) Acid-fast bacillus C) Non-spore-forming coccus D) Gram-positive, aerobic, spore-forming bacillus
12.	. The capsule of Bacillus anthracis is primarily composed of: A) Polysaccharide B) Proteins C) Poly–D–glutamic acid D) Lipopolysaccharide
13.	 Which diagnostic reaction is classically used to demonstrate Bacillus anthracis in smears? A) Ziehl–Neelsen stain B) Gram stain C) McFadyean reaction D) India ink preparation
14.	 The virulence of anthrax is largely attributed to: A) Slow bacterial replication B) The combined action of its capsule and tripartite toxin C) Its ability to form biofilms D) Rapid spore germination

15.	Anthrax spores may remain viable in soil for:A) Several daysB) Several monthsC) Several yearsD) Decades
16.	Which of the following species is relatively resistant to anthrax?A) CattleB) SheepC) SwineD) Goats
17.	In young animals affected by anthrax, death is most commonly due to: A) Respiratory failure B) Acute myocarditis and gastroenteritis C) Neurological collapse D) Renal failure
18.	 The capsule of Bacillus anthracis aids virulence by: A) Triggering cytokine storm B) Preventing phagocytosis C) Enhancing spore formation D) Inducing apoptosis
19.	The protective antigen of Bacillus anthracis is encoded on which plasmid? A) pXO2 B) pXO1 C) pBR322 D) pUC19
20.	Due to its potential for bioterrorism, anthrax is classified under: A) Category B B) Category C C) Category A D) Category D
21.	Hemorrhagic septicemia (HS) is caused by: A) Mannheimia haemolytica B) Escherichia coli C) Clostridium perfringens D) Pasteurella multocida type 1
22.	HS outbreaks are most common during which season? A) Summer B) Winter C) Monsoon D) Spring
23.	A key precipitating factor for HS is:A) OverfeedingB) Stress due to transportation and heavy worm burdenC)Genetic predispositionD) Lack of exercise
24.	The initial site of bacterial proliferation in HS is the: A) Lungs B) Tonsillar region C) Liver D) Kidneys
25.	Early treatment of HS often includes which antibiotic?A) TetracyclineB) SulfonamidesC) ChloramphenicolD) Penicillin
26.	In HS, the primary reservoir for infective bacteria in asymptomatic carriers is the: A) Skin B) Gastrointestinal tract C) Nasopharynx of bovine carriers D) Urinary tract
27.	In peracute cases of HS, death may occur within: A) 12 hours B) 8–24 hours C) 3–5 days D) 7–10 days
28.	Supportive therapy in HS management typically involves:A) AntifungalsB) ImmunosuppressantsC) Fluid therapy and anti-inflammatory agentsD) Diuretics
29.	Among livestock, HS is most frequently observed in:A) BuffaloB) CattleC) PigsD) Horses
30.	In HS, ingestion of contaminated feed or water is: A) Rare B) Unimportant C) A recognized transmission route D) Only theoretical

- 31. In sheep and goats, pneumonic pasteurellosis is most often caused by:
 A) Pasteurella multocida B) Mannheimia haemolytica A2 C) Bibersteinia trehalosi D) Streptococcus dysgalactiae
- 32. In pigs, the normal inhabitant of the upper respiratory tract implicated in pasteurellosis is:
 A) Mannheimia haemolytica
 B) Pasteurella multocida
 C) Staphylococcus aureus
 D) Mycoplasma hyopneumoniae
- 33. Pneumonic pasteurellosis in small ruminants can affect:A) Only neonates B) Only adults C) Only immunocompromised animals D)All age groups
- 34. The leukotoxin produced during pasteurellosis primarily targets:A) Epithelial cellsB) NeuronsC) Red blood cellsD) Ruminant leukocytes
- 35. The systemic form of pasteurellosis in weaned lambs is mainly caused by:
 A) Biotype A of Mannheimia haemolytica
 B) Biotype B of Mannheimia haemolytica
 C) Pasteurella multocida
 D) Bibersteinia trehalosi
- 36. Listeria monocytogenes can grow at temperatures as low as:
 A) 0°C
 B) 2°C
 C) 4°C
 D) 10°C
- 37. In ruminants, listeriosis most commonly presents as:
 A) Septicemia B) Abortion C) Enteritis D) Encephalitis with unilateral paralysis
- 38. The cold enrichment method for listeriosis relies on the organism's ability to multiply at:
 A) 37°C
 B) 25°C
 C) 10°C
 D) 4°C
- 39. Listeria monocytogenes is an intracellular pathogen.A) TrueB) FalseC) Only in ruminantsD) Only in swine
- 40. In cases of listerial encephalitis, the ideal specimen for isolation is: A) Milk B) Blood C) Feces D) **Brain tissue**
- 41. Mycobacterium bovis is the primary cause of tuberculosis in: A) Humans B) Cattle C) Birds D) Swine
- 42. The MGIT BACTEC system is considered the gold standard for:
 A) DNA sequencing of TB strains
 B) Rapid culture and drug-sensitivity testing of
 Mycobacterium tuberculosis
 C) Antibody detection in TB
 D) Histopathological examination
- 43. In bovine tuberculosis, the primary complex is most commonly located in the: A) Lymph nodes B) Lungs C) Liver D) Spleen
- 44. For TB screening in cattle, the most widely used test is the:
 A) Rose Bengal test B) Single intradermal tuberculin test C) ELISA for NSP antibodies D) Agglutination test
- 45. "Pearl's disease" in bovine tuberculosis refers to:
 A) Grape-like clusters of nodular lesions on serosal surfaces
 B) Calcification of pulmonary nodules
 C) Caseation in lymph nodes
 D) Diffuse hepatic granulomas
- 46. Mycobacterium avium primarily infects:A) Cattle B) Birds C) Swine D) Horses

47.	A false-negative tuberculin test in cattle may occur due to:A) Recent infectionB) Advanced disease with anergic responseC) Over-vaccinationD) Excessive tuberculin dose
48.	The Stormont test in tuberculosis is used to:A) Isolate mycobacteriaB) Assess delayed hypersensitivity reaction to tuberculinC) Measure serum IgG levelsD) Visualize granulomas
49.	Johne's disease is caused by: A) Mycobacterium tuberculosisB) Mycobacterium bovisC) Mycobacteriumavium subspecies paratuberculosisD) Mycobacterium leprae
50.	The pathognomonic gross lesion in Johne's disease is:A) Ulcerative colitisB) Granulomas in the liverC) Thickened, corrugatedintestinal mucosa resembling brain tissueD) Nodular splenomegaly
51.	Transmission of Johne's disease primarily occurs through:A) Aerosol inhalationB) Ingestion of contaminated feed or waterC) Direct skincontactD) Vector-borne routes
52.	The rectal pinch technique in Johne's disease is used for:A) VaccinationB) Diagnostic sampling of intestinal tissueC) TherapeuticinterventionD) Monitoring treatment response
53.	The incubation period for Johne's disease is typically: A) Weeks B) Months C) Years D) Days
54.	A common serological test for Johne's disease is the: A) PCR assay B) Western blot C) Agglutination test D) Complement Fixation Test (CFT)
55.	Brucellosis is caused by bacteria that are: A) Gram-negative coccobacilli B) Gram-positive cocci C) Spore-forming rods D) Acid-fast bacilli
56.	In small ruminants, the most zoonotic Brucella species is: A) B. abortus B) B. melitensis C) B. suis D) B. canis
57.	A substance present in fetal tissues that enhances Brucella growth is: A) Glucose B) Fructose C) Erythritol D) Sucrose
58.	An early sign of brucellosis in a herd is often:A) LamenessB) Reduced milk productiongestationD) Chronic cough
59.	The Rose Bengal Plate Test in brucellosis is primarily used for:A) Confirmatory diagnosisB) Screening for antibodiesC) Bacterial cultureD) Drug sensitivity
60.	Live Brucella vaccines are generally avoided in: A) Calves B) Heifers C) Pregnant cows D) Bulls
61.	Rinderpest belongs to which virus family?A) ParamyxoviridaeB) PicornaviridaeC) OrthomyxoviridaeD) Reoviridae
62.	Peste des petits ruminants (PPR) predominantly affects:A) CattleB) BuffaloesC) Sheep and goatsD) Pigs

63.	Which disease has been declared globally eradicated?A) PPRB) FMDC) RinderpestD) Brucellosis
64.	The PPR virus is most closely related to: A) Canine distemper virus B) Measles virus C) Rinderpest virus D) FMD virus
65.	In PPR, which group shows a higher mortality rate? A) Sheep B) Goats C) Cattle D) Buffaloes
66.	Black Quarter (Blackleg) in cattle is most commonly caused by:A) Clostridium septicumB) Clostridium chauvoeiC) Clostridium novyiD)Clostridium perfringens
67.	Pulpy kidney disease in lambs is due to infection by:A) Clostridium perfringens type AB) Clostridium perfringens type DC)Clostridium tetaniD) Clostridium botulinum
68.	The neurotoxin responsible for tetanus is known as: A) Tetanolysin B) Tetanospasmin C) Botulinum toxin D) Clostridial enterotoxin
69.	Botulism in animals is primarily caused by:A) Ingestion of live Clostridium botulinumB) Ingestion of preformed botulinumtoxinC) Direct wound infectionD) Inhalation of spores
70.	The "saw horse" stance in affected animals is most characteristic of: A) Botulism B) Black Quarter C) Tetanus D) Malignant edema
71.	Effective management of tetanus relies on early administration of:A) Antibiotics aloneB) Antitoxin to neutralize circulating tetanus toxinC)Surgical debridement onlyD) Supportive care without specific therapy
72.	Malignant edema is most commonly associated with which clostridial species?A) Clostridium tetaniB) Clostridium septicumC) Clostridium perfringens typeDD) Clostridium botulinum
73.	In Black Quarter, monsoon-induced stress triggers:A) Immediate resolution of infectionB) Activation of dormant spores leading torapid toxin productionC) Formation of granulomasD) A delayed immune response
74.	In clostridial infections, penicillin is used primarily to: A) Neutralize toxins B) Eliminate bacteria before significant toxin production occurs C) Stimulate antibody production D) Prevent spore formation
75.	Mastitis is defined as inflammation of the:A) LiverB) KidneyC) Lymph nodesD) Mammary gland (udder)
76.	The most common contagious pathogen causing mastitis is:A) Escherichia coliB) Streptococcus uberisC) Mycoplasma spp.D)Staphylococcus aureus
77.	The California Mastitis Test (CMT) primarily detects:A) Bacterial culture growthB) Milk fat alterationsC) Increased somatic cellcountD) pH changes only

 78. In cases of mastitis, the pH of milk typically rises to values: A) Below 6.5 B) 6.5–6.8 C) Above 7.4 D) Exactly 7.0
 79. Dry cow therapy is primarily employed to: A) Increase milk production immediately after calving B) Prevent new intramammary infections during the dry period C) Treat acute mastitis D) Enhance udder conformation
 80. The milk ring test is used in brucellosis screening to detect: A) Milk fat percentage B) Antibodies against Brucella in milk C) Somatic cell counts D) Bacterial endotoxins
 81. Neonatal diseases in livestock typically occur within: A) Birth to 14 days B) 14–30 days C) 1–2 months D) 2–3 months
 82. In early postnatal calves, noninfectious diseases are most often due to: A) Viral infections B) Bacterial sepsis C) Metabolic factors such as hypoglycemia and hypothermia D) Parasitic infestations
 83. Failure of passive transfer in neonates is most commonly a result of: A) Genetic abnormalities B) Overfeeding C) Inadequate colostrum intake D) Excessive physical activity
 84. In neonatal colibacillosis, the primary causative organism is: A) Salmonella spp. B) Rotavirus C) Clostridium perfringens D) Enteropathogenic Escherichia coli
 85. A serum total protein level of 5.2 g/dL or greater in neonatal calves indicates: A) Dehydration B) Liver dysfunction C) Adequate passive transfer of immunity D) Renal insufficiency
 86. Elevated serum gamma-glutamyl transferase (GGT) activity in calves after birth is used to assess: A) Kidney function B) Liver damage C) Successful colostral antibody transfer D) Muscle injury
 87. Twin-born calves typically exhibit higher mortality rates primarily due to: A) Genetic defects B) Overnutrition C) Failure of passive transfer of immunoglobulins D) Increased birth weight
 88. "Navel ill" in neonatal calves refers to: A) Umbilical hernia B) Infection of the umbilical cord leading to systemic sepsis C) Congenital deformity D) Nutritional deficiency
 89. The enterotoxemic form of neonatal colibacillosis is characterized by: A) Prolonged diarrhea with gradual recovery B) Rapid collapse and death with minimal diarrheal output C) Chronic intermittent fever D) Persistent coughing
90. Among viral agents, which is most commonly implicated in neonatal calf diarrhea outbreaks?A) Coronavirus B) BVD virus C) Adenovirus D) Rotavirus
 91. In septicemic colibacillosis of neonates, bacterial localization in joints may lead to: A) Respiratory distress B) Skin lesions C) Arthritis and lameness D) Neurological deficits

- 92. The white side test is utilized to detect mastitis by identifying:
 A) Milk protein alterations
 B) Changes due to increased somatic cell content
 C) Bacterial DNA
 D) Fatty acid levels
- 93. To prevent hypothermia in neonatal calves, a critical management practice is:
 A) Immediate weaning B) Reducing feed intake C) Increasing physical activity
 D) Providing shelter and supplemental heat
- 94. In mastitis diagnostics, the NAG-ase test is used to assess:
 A) Bacterial culture growth B) Milk fat content C) Enzyme activity linked to somatic cells D) pH levels
- 95. In neonatal diarrhea, metabolic acidosis is mainly caused by:
 A) Lactic acid buildup B) Renal failure C) Loss of bicarbonate ions in the intestines D) Overproduction of gastric acid
- 96. To assess the adequacy of passive immunity in calves, the most reliable measurement is:
 A) Serum creatinine B) White blood cell count C) Serum total protein and IgG levels D) Serum glucose
- 97. The minimal gestational age for viability in lambs is approximately: A) 108 days B) 240 days C) 300 days D) **138 days**
- 98. In neonates, the risk of septicemic disease is most closely linked to:
 A) Birth weight B) Ambient temperature C) Serum IgG concentration (adequate passive transfer)
 D) Genetic predisposition
- 99. A critical measure in evaluating passive transfer in neonatal calves is the:
 A) White blood cell count B) Serum creatinine level C) Serum total protein concentration D) Blood pH
- 100. The best indicator of effective colostral transfer in neonates is:
 A) Elevated liver enzymes
 B) Low somatic cell count
 C) High serum IgG levels
 D) Increased body temperature